1. 数理统计中似然函数怎么求啊
假设样本x1~xn独立同分布,具有概率密度函数p(xi;α) (1<=i<=n),其中α为要估计的参数。
则似然函数即为这n个样本的联合密度函数,由独立性有似然函数为:
L(α)=Πp(xi:α) Π表示从下标i=1到i=n的连乘,由于样本值x1~xn已确定,而α是未知的有待估计的参数,所以我们将这个联合密度函数看作α的函数。
极大似然估计方法是求α使得L(α)最大,因此常常将L(α)关于α求偏导再令其等于0,然后解出这个方程中的α。
由于很多种随机变量分布的概率密度函数p(xi;α)都是指数族形式,这时我们转而利用对数似然函数求极大似然估计会比较方便,故定义对数似然函数为:
l(α)=ln L(α)=Σln p(xi;α) 由于l(α)与L(α)的单调性相同,故它们取极大值时对应的α也相同。
扩展资料:
假定一个关于参数θ、具有连续概率密度函数f的随机变量X,则在给定X的输出x时,参数θ的似然函数可表示为
上式常常写为
同样需要注意的是,此处并非条件概率密度函数。
似然函数的主要用法在于比较它相对取值,虽然这个数值本身不具备任何含义。例如,考虑一组样本,当其输出固定时,这组样本的某个未知参数往往会倾向于等于某个特定值,而不是随便的其他数,此时,似然函数是最大化的。
似然函数乘以一个正的常数之后仍然是似然函数,其取值并不需要满足归一化条件
似然函数的这种特性还允许我们叠加计算一组具备相同含义的参数的独立同分布样本的似然函数。
似然比检验是一种寻求检验方法的一般法则。其基本思想如下: 设由n个观察值X1,X2,…,Xn组成的随机样本来自密度函数为f(X; θ)的总体,其中θ为未知参数。要检验的无效假设是H0: θ=θ0,备择假设是H1:θ≠θ0,检验水准为α。为此,求似然函数在θ=θ0处的值与在θ=θ(极大点)处的值(即极大值)之比,记作λ,可以知道:
(1) 两似然函数值之比值λ只是样本观察值的函数,不包含任何未知参数。
(2) 0≤λ≤1,因为似然函数值不会为负,且λ的分母为似然函数的极大值,不会小于分子。
(3)越接近θ0时,λ越大;反之,与θ0相差愈大,λ愈小。
参考资料来源:百度百科——似然函数
2. 数理统计中似然函数怎么求啊
假设样本x1~xn独立同分布,具有概率密度函62616964757a686964616fe4b893e5b19e31333431336137数p(xi;α) (1<=i<=n),其中α为要估计的参数。
则似然函数即为这n个样本的联合密度函数,由独立性有似然函数为: L(α)=Πp(xi:α) Π表示从下标i=1到i=n的连乘,由于样本值x1~xn已确定,而α是未知的有待估计的参数,所以我们将这个联合密度函数看作α的函数。 极大似然估计方法是求α使得L(α)最大,因此常常将L(α)关于α求偏导再令其等于0,然后解出这个方程中的α。
由于很多种随机变量分布的概率密度函数p(xi;α)都是指数族形式,这时我们转而利用对数似然函数求极大似然估计会比较方便,故定义对数似然函数为: l(α)=ln L(α)=Σln p(xi;α) 由于l(α)与L(α)的单调性相同,故它们取极大值时对应的α也相同。 扩展资料: 假定一个关于参数θ、具有连续概率密度函数f的随机变量X,则在给定X的输出x时,参数θ的似然函数可表示为上式常常写为 ,同样需要注意的是,此处并非条件概率密度函数。
似然函数的主要用法在于比较它相对取值,虽然这个数值本身不具备任何含义。例如,考虑一组样本,当其输出固定时,这组样本的某个未知参数往往会倾向于等于某个特定值,而不是随便的其他数,此时,似然函数是最大化的。
似然函数乘以一个正的常数之后仍然是似然函数,其取值并不需要满足归一化条件。 似然函数的这种特性还允许我们叠加计算一组具备相同含义的参数的独立同分布样本的似然函数。
似然比检验是一种寻求检验方法的一般法则。其基本思想如下: 设由n个观察值X1,X2,…,Xn组成的随机样本来自密度函数为f(X; θ)的总体,其中θ为未知参数。
要检验的无效假设是H0: θ=θ0,备择假设是H1:θ≠θ0,检验水准为α。为此,求似然函数在θ=θ0处的值与在θ=θ(极大点)处的值(即极大值)之比,记作λ,可以知道: (1) 两似然函数值之比值λ只是样本观察值的函数,不包含任何未知参数。
(2) 0≤λ≤1,因为似然函数值不会为负,且λ的分母为似然函数的极大值,不会小于分子。 (3)越接近θ0时,λ越大;反之,与θ0相差愈大,λ愈小。
参考资料来源:百度百科——似然函数。
3. 数理统计中,连续分布的最大似然函数怎么写
连续分布,连续参数空间最常见的连续概率分布是正态分布,其概率密度函数如下: f(x\mid \mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}现在有n个正态随机变量的采样点,要求的是一个这样的正态分布,这些采样点分布到这个正态分布可能性最大(也就是概率密度积最大,每个点更靠近中心点),其n个正态随机变量的采样的对应密度函数(假设其独立并服从同一分布)为: f(x_1,\ldots,x_n \mid \mu,\sigma^2) = \left( \frac{1}{2\pi\sigma^2} \right)^\frac{n}{2} e^{-\frac{ \sum_{i=1}^{n}(x_i-\mu)^2}{2\sigma^2}}或: f(x_1,\ldots,x_n \mid \mu,\sigma^2) = \left( \frac{1}{2\pi\sigma^2} \right)^{n/2} \exp\left(-\frac{ \sum_{i=1}^{n}(x_i-\bar{x})^2+n(\bar{x}-\mu)^2}{2\sigma^2}\right),这个分布有两个参数:μ,σ2.有人可能会担心两个参数与上边的讨论的例子不同,上边的例子都只是在一个参数上对可能性进行最大化。
实际上,在两个参数上的求最大值的方法也差不多:只需要分别把可能性\mbox{lik}(\mu,\sigma) = f(x_1,,\ldots,x_n \mid \mu, \sigma^2)在两个参数上最大化即可。当然这比一个参数麻烦一些,但是一点也不复杂。
使用上边例子同样的符号,我们有θ = (μ,σ2).最大化一个似然函数同最大化它的自然对数是等价的。因为自然对数log是一个连续且在似然函数的值域内严格递增的上凸函数。
[注意:可能性函数(似然函数)的自然对数跟信息熵以及Fisher信息联系紧密。]求对数通常能够一定程度上简化运算,比如在这个例子中可以看到: \begin{matrix} 0 & = & \frac{\partial}{\partial \mu} \log \left( \left( \frac{1}{2\pi\sigma^2} \right)^\frac{n}{2} e^{-\frac{ \sum_{i=1}^{n}(x_i-\bar{x})^2+n(\bar{x}-\mu)^2}{2\sigma^2}} \right) \\ & = & \frac{\partial}{\partial \mu} \left( \log\left( \frac{1}{2\pi\sigma^2} \right)^\frac{n}{2} - \frac{ \sum_{i=1}^{n}(x_i-\bar{x})^2+n(\bar{x}-\mu)^2}{2\sigma^2} \right) \\ & = & 0 - \frac{-2n(\bar{x}-\mu)}{2\sigma^2} \\ \end{matrix}这个方程的解是\widehat{\mu} = \bar{x} = \sum^{n}_{i=1}x_i/n .这的确是这个函数的最大值,因为它是μ里头惟一的一阶导数等于零的点并且二阶导数严格小于零。
同理,我们对σ求导,并使其为零。 \begin{matrix} 0 & = & \frac{\partial}{\partial \sigma} \log \left( \left( \frac{1}{2\pi\sigma^2} \right)^\frac{n}{2} e^{-\frac{ \sum_{i=1}^{n}(x_i-\bar{x})^2+n(\bar{x}-\mu)^2}{2\sigma^2}} \right) \\ & = & \frac{\partial}{\partial \sigma} \left( \frac{n}{2}\log\left( \frac{1}{2\pi\sigma^2} \right) - \frac{ \sum_{i=1}^{n}(x_i-\bar{x})^2+n(\bar{x}-\mu)^2}{2\sigma^2} \right) \\ & = & -\frac{n}{\sigma} + \frac{ \sum_{i=1}^{n}(x_i-\bar{x})^2+n(\bar{x}-\mu)^2}{\sigma^3} \\ \end{matrix}这个方程的解是\widehat{\sigma}^2 = \sum_{i=1}^n(x_i-\widehat{\mu})^2/n.因此,其关于θ = (μ,σ2)的最大似然估计为: \widehat{\theta}=(\widehat{\mu},\widehat{\sigma}^2) = (\bar{x},\sum_{i=1}^n(x_i-\bar{x})^2/n).。
4. 似然函数
摘自百度百科似然函数定义设总体X服从分布P(x;θ)(当X是连续型随机变量时为概率密度,当X为离散型随机变量时为概率分布),θ为待估参数,X1,X2,…Xn是来自于总体X的样本,x1,x2…xn为样本X1,X2,…Xn的一个观察值,则样本的联合分布(当X是连续型随机变量时为概率密度,当X为离散型随机变量时为概率分布)L(θ)=L(x1,x2,…,xn;θ)=ΠP(xi;θ)称为似然函数。
极大似然函数是指找出一个(θ)的组合,使得L(θ)=L(x1,x2,…,xn;θ)=ΠP(xi;θ)最大化,即使得样本数据出现的概率最大化(这是基于我们认为样本的数据已经发生了,那么这组数据的出现概率必然是最大的)。参数名一般的,出现在说明中一个已命名的系数向量中的每一个元素都将被视为待估参数。
由于说明中的已命名的系数向量的所有元素都将被视为待估参数,所以必须确定所有的系数确实能影响一个或多个似然贡献的值。如果一个参数对似然没有影响,那么在进行参数估计时,将遇到一个奇异错误。
而除了系数元素外所有的对象在估计过程中都将被视为固定的,不可改变的。估计的顺序logL说明包含了一个或多个能够产生包含似然贡献的序列的赋值语句。
在执行这些赋值语句的时候,EViews总是从顶部到底部执行,所以后面计算要用到的表达式应放在前面。EViews对整个样本重复的计算每个表达式。
EViews将对模型进行重复计算时采用方程顺序和样本观测值顺序两种不同方式,这样你就必须指定采用那种方式,即观测值和方程执行的顺序。默认情形下,EViews用观测值顺序来计算模型,此种方式是先用第一个观测值来计算所有的赋值语句,接下来是用第二个观测值来计算所有的赋值语句,如此往复,直到估计样本中所有观测值都使用过。
这是用观测值顺序来计算递归模型的正确顺序,递归模型中每一个观测值的似然贡献依赖于前面的观测值,例如AR模型或ARCH模型。可以改变计算的顺序,这样EViews就可以用方程顺序来计算模型,先用所有的观测值来计算第一个赋值语句,然后用所有的观测值计算第二个赋值语句,如此往复,对说明中每一个赋值语句都用同样方式进行计算。
这是用中间序列的总量统计作为后面计算的输入的模型的正确顺序。也可以通过在说明中加入一条语句来声明你所选择的计算方法。
要用方程顺序来计算,仅加一行关键字“@byeqn”。要用样本顺序来计算,你可以用关键字“@byobs”。
如果没有给出关键字,那么系统默认为“@byobs”。无论如何,如果在说明中有递归结构,或要求基于中间结果总量统计的计算的条件下,如果想得到正确的结果,就必须选择适当的计算顺序。
5. 似然函数是什么东西,怎么理解这个概念
统计学中,似然函数(),或,是一种关于统计模型参数的函数。给定输出x时,关于参数θ的似然函数L(θ|x)(在数值上)等于给定参数θ后变量X的概率:
L(θ|x)=P(X=x|θ).
似然函数在推断统计学(Statistical inference)中扮演重要角色,尤其是在参数估计方法中。在教科书中,似然常常被用作“概率”的同义词。但是在统计学中,二者有截然不同的用法。概率描述了已知参数时的随机变量的输出结果;似然则用来描述已知随机变量输出结果时,未知参数的可能取值。例如,对于“一枚正反对称的硬币上抛十次”这种事件,我们可以问硬币落地时十次都是正面向上的“概率”是多少;而对于“一枚硬币上抛十次,落地都是正面向上”这种事件,我们则可以问,这枚硬币正反面对称的“似然”程度是多少。