1. 极坐标方程怎么写怎么算
极坐标系描述的曲线方程称作极坐标方程,通常表示为r为自变量θ的函数。极坐标方程经常会表现出不同的对称形式,如果r(−θ) = r(θ),则曲线关于极点(0°/180°)对称,如果r(π+θ) = r(θ),则曲线关于极点(90°/270°)对称,如果r(θ−α) = r(θ),则曲线相当于从极点逆时针方向旋转α°。
公式
x = rcos(θ),
y = rsin(θ),
r^2=x^2+y^2 (一般默认r>0)
tan(θ)=y/x (x≠0)
2. 如何化简 请写下详细过程并做必要文字说明
解:
√2 / (2-√3) -√6 /2
=√2(2+√3) /(4-3) -√6/2
=2√2-√6+√6/2
=2√2 +√6/2
解: √2 / (2-√3) -√6 /2 =√2(2+√3) /(4-3) -√6/2 =2√2+√6- √6/2 =2√2 - √6/2 原本也不对,正负号写错了! 记得及时采纳,谢谢! 后面的 √6/2一直往下带即可。 很明显不对啊,打错了。 是√6/2。 复制上面的时候上复制了一个。你对照一下看看! √2 / (2-√3) -√6 /2 =√2(2+√3) /(4-3) -√6/2 --前面的分子分母同乘以2+√3 。√2 (2+√3) / 【(2+√3 )(2-√3)】 =2√2+√6- √6/2---------------化简 =2√2 +√6/2------------结果 根号6 - 二分之 根号6 =二分之根号6 你知道你现在问我的题目是什么吗? 相当于2-1=? √6 /2+ √6 /2 = √6 √6 -√6 /2 =√6/2
3. 这道简算题怎么做
这道题关键是要知道一个公式:1/n*1/(n+1)*1/(n+2)=1/2[1/n+1/(n+2)-2/(n+1)]
这个公式你可以通分证明出来的。
下面就是按照这个公式化简。
原式=1/2[(1+1/3-1/2*2)+(1/2+1/4-1/3*2)+……+(1/101+1/103-2/102)]
把各个小括号里的第一项、第二项、第三项分别加到一块儿:
原式=1/2[(1+1/2+1/3+……+1/101)+(1/3+1/4+……1/101+1/102+1/103)-2[(1/2+1/3+……+1/101+1/102)]
可以发现三大部分有共同项1/3+……+1/101,可以消掉,
只剩下原式=1/2[1+1/2+1/102+1/103-2(1/2+1/102)]
=1313/5253
希望你可以看懂。不明白你再说一声。