1.怎么阅读SPSS卡方检验的结果
Chi-Square就是卡方的意思,因此你的结果的卡方值等于9.910;df指的是自由度;ASYMP.sig就是我们常说的P值,因此P=0.007;一般来说,只要P值小于0.05就认为结果有显著性差异;此外,你还应该注意表格下面的注解:
a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 66.7.
这句话很重要,关系到你的结果是否可靠!ASYMP.sig的结果,理论频数小于5的cells(格子)比例不能超过20%,否则结果不可靠。按照这个标准,你的数据没有任何一个格子的理论频数小于5(最小值是66.7),因此你的结果是可靠的。
如果理论频数小于5的cells(格子)比例超过20%,你就不能使用ASYMP.sig的结果,此时应该在SPSS卡方检验中选择使用Exact Test(确切概率法),以Exact Test的结果为准(软件也同时显示ASYMP.sig的结果)。
2.下面两组数据需要做卡方检验,怎么做呀
卡方检验
你的数据应该用交叉列联表做,数据录入格式为:建立两个变量,变量1是组别,
正常对照组用数据1表示,病例组用数据2表示;变量2是疗效等分类变量,用1表示分类属性1,用2表示分类属性2,
还有一个变量3是权重,例数
数据录入完成后,先加权频数后点analyze-descriptive statistics-crosstabs-把变量1选到rows里
把变量2选到column里,然后点击下面的statistics,打开对话框,勾选chi-squares,
然后点continue,再点ok,出来结果的第3个表就是你要的卡方检验,第一行第一个数是卡方值,
后面是自由度,然后是P值。
3.卡方检验能用来分析什么样问题,相应的统计假 设怎么表达
卡方检验是用途非常广的一种假设检验方法,它在分类资料统计推断中的应用,包括:两个率或两个构成比比较的卡方检验;多个率或多个构成比比较的卡方检验以及分类资料的相关分析等。
T为理论数。T计算公式丅RC=nRnc/N,丅RC为第R行C列格子的理论数,nR为第R行的合计数,nC为第C列的合计数。
其他:
t检验有单样本t检验,配对t检验和两样本t检验。
单样本t检验:是用样本均数代表的未知总体均数和已知总体均数进行比较,来观察此组样本与总体的差异性。
配对t检验:是采用配对设计方法观察以下几种情形:
1,两个同质受试对象分别接受两种不同的处理;
2,同一受试对象接受两种不同的处理;
3,同一受试对象处理前后。
4.卡方检验研究的方法
1、处理四格表数据时不考虑样本量和最小理论频数而直接采用卡方检验 处理四格表数据是卡方检验最为常见的用途之一,其目的在于分析“构成比”或者“率”上的差异是否具有统计学意义。
对于四格表数据,使用卡方检验的条件为样本量大于 40,且最小理论频数应大于 5。对于某些小样本的、或者指标阳性率较低的研究,总样本量可能小于 40,最小理论频数也可能小于 5,此时应该采用 Fisher 确切概率法进行分析。
比如某研究需比较小细胞肺癌和非小细胞肺癌内某个基因的表达情况的差异是否有统计学意义,得出如下四格表:该研究的样本量仅为 30 个,且最小理论频数为(12*9)/30=3.6,所以应该采用 Fisher 确切概率法进行分析。实际上,从理论上讲,若要分析四格表数据中的构成比或者率之间的差异是否有统计学意义,Fisher 确切概率法的结果是最可靠的。
若是使用软件对数据进行分析,不论样本量和最小理论频数,均可采用 Fisher 确切概率法。 2、不考虑分析目的、设计类型而盲目套用卡方检验 有的四格表资料本身是配对的,且研究的目的主要是回答“一致性”或者“不一致性”的问题,此时就不应该用卡方检验对数据进行分析。
比如:某研究者发明了一种新的 HIV 检测法,并且用该法和免疫印迹法(检测 HIV 感染的“金标准”)同时检测了 100 份血清,得到如下四格表数据: 该研究在设计上与表 1 中的研究最大的区别在于“配对”,即同一样本分别接受了新方法检测和免疫印迹法(金标准)的检测。研究者最关心的问题应该是“新方法和金标准之间的一致性”问题,若采用卡方检验进行分析,得出的结论是“免疫印迹法检测结果的频数分布在新方法阳性组和阴性组中是不同的”,这一结论显然并无多大专业价值。
对于此类研究,可以采用两种方法进行统计,一是采用 Mcnemar χ2 检验公式计算两种方法不一致的部分是否具有统计学意义;二是采用 Kappa 检验分析两种结果之间的一致性。 需要说明的是,此类研究中的一种方法必须是金标准,否则研究可能没有价值。
以表 2 中的数据为例,若免疫印迹法并非检测 HIV 感染的金标准,两种方法的一致性即使好得一塌糊涂,也可能无济于事。 因为一个显而易见的问题是:这两种方法可能都是错误的检测方法。
比如:采用金标准对 100 份血清进行检测后,其中 90 例为阳性,而不论是新方法还是免疫印迹法,均仅仅检测出了 55 个阳性样本,漏检率显然太高。 3、误用卡方检验处理等级资料 等级资料的表示方法与分类资料相似,因此受“定式思维”的影响,部分同行“习惯性”地采用卡方检验对等级资料进行处理,这也是医学期刊上最常见的滥(乱)用卡方检验的行为。
卡方检验回答的问题仅仅是“构成比”或者“率”上的差异是否具有统计学意义,而不能回答效应指标的强度高低问题。比如某研究比较了两类人群胰腺癌分期的分布状况,如下表所示: 此类数据的一个显著特点是胰腺癌的分期(Ⅰ、Ⅱ、Ⅲ、Ⅳ期)是一个等级资料,研究者的研究目的是分析甲乙两群人胰腺癌的分期是否有差别,是一个强度“分期早晚”的问题,而不是“构成比”的差异。
若用卡方检验处理此类数据,得出的结论就是“甲乙两类人群胰腺癌分期构成比上的差异是否具有统计学意义”,而无法明确“孰高孰低”的问题。 以上述表格为例,卡方检验结果显示有统计学意义,但问题在于:根据表中数据,人群甲以Ⅰ期和Ⅳ期为主,人群乙以Ⅱ期和Ⅲ期为主,让人完全无法判断两类人群的疾病分期“孰早孰晚”的问题。
处理此类数据的一般方法是将分期进行秩转换,然后以秩和检验进行统计分析,也可以直接采用 Riddit 分析进行统计。 4、对于多组资料反复使用卡方检验进行比较 又是研究者面对的数据可能有多行或者多列(R*C 资料),研究者需要逐一比较各组数据的差异是否有统计学意义。
比如某研究者对不同血型的个体患乙型肝炎的情况进行了调查,得出如下数据: 这是一个率的比较问题,研究目的主要在于分析各个血型的人群 HBV 感染的发病率是否相同。处理此类数据,一般是直接采用卡方检验从整体上分析各组人群率(构成比)上的差异是否具有统计学意义;若具有统计学意义,则根据研究目的进一步觉得是否进行组间的比较。
以本研究为例,研究者可能还需要逐一比较各组 HBV 感染的发病率之间的差异是否具有统计学意义。处理此类数据时,最容易犯的一类错误就是将表格进行拆分成六个四格表反复采用卡方检验进行统计分析。
实际上,这种错误的统计学方法类似于“反复使用 t 检验比较多组资料”,会增大Ⅰ类误差的概率。正确的做法应该是采用卡方分割法,通过改校正验水准的方式来进行两两比较。
需要说明的是,在整体比较之后是否需要进行两两比较,如何进行两两比较在很大程度上取决于专业需要,或者说研究目的,特别是分组因素的“属性”是否相同。比如某研究欲分析了基因 A 在类风湿性关节炎中的表达情况(基因表达情况以阳性和阴性进行描述),除了健康对照外,研究者还设立了疾病对照组,包括系统性红斑狼疮和干燥综合症。