1.拉普拉斯变换怎么写
[5] 拉普拉斯变换是对于t>=0函数值不为零的连续时间函数x(t)通过关系式[6] (式中st为自然对数底e的指数)变换为复变量s的函数X(s)。
它也是时间函数x(t)的“复频域”表示方式。据此,在“电路分析”中,元件的伏安关系可以在复频域中进行表示,即电阻元件:V=RI,电感元件:V=sLI,电容元件:I=sCV。
如果用电阻R与电容C串联,并在电容两端引出电压作为输出,那么就可用“分压公式”得出该系统的传递函数为H(s)=(1/RC)/(s+(1/RC)) 于是响应的拉普拉斯变换Y(s)就等于激励的拉普拉斯变换X(s)与传递函数H(s)的乘积,即 Y(s)=X(s)H(s)如果定义:f(t)是一个关于t的函数,使得当t<0时候,f(t)=0;s是一个复变量;mathcal 是一个运算符号,它代表对其对象进行拉普拉斯积分int_0^infty e' dt;F(s)是f(t)的拉普拉斯变换结果。则f(t),的拉普拉斯变换由下列式子给出:F(s),=mathcal left =int_ ^infty f(t)' e' dt 拉普拉斯逆变换,是已知F(s)' 求解f(t)的过程。
用符号 mathcal' 表示。拉普拉斯变换公式拉普拉斯逆变换的公式是:对于所有的t>0,f(t)= mathcal ^ left=frac int_ ^ F(s)' e'dsc' 是收敛区间的横坐标值,是一个实常数且大于所有F(s)' 的个别点的实部值。
为简化计算而建立的实变量函数和复变量函数间的一种函数变换。对一个实变量函数作拉普拉斯变换,并在复数域中作各种运算,再将运算结果作拉普拉斯反变换来求得实数域中的相应结果,往往比直接在实数域中求出同样的结果在计算上容易得多。
拉普拉斯变换的这种运算步骤对于求解线性微分方程尤为有效,它可把微分方程化为容易求解的代数方程来处理,从而使计算简化。在经典控制理论中,对控制系统的分析和综合,都是建立在拉普拉斯变换的基础上的。
引入拉普拉斯变换的一个主要优点,是可采用传递函数代替微分方程来描述系统的特性。这就为采用直观和简便的图解方法来确定控制系统的整个特性(见信号流程图、动态结构图)、分析控制系统的运动过程(见奈奎斯特稳定判据、根轨迹法),以及综合控制系统的校正装置(见控制系统校正方法)提供了可能性。
拉普拉斯变换用 f(t)表示实变量t的一个函数,F(s)表示它的拉普拉斯变换,它是复变量s=σ+j&owega;的一个函数,其中σ和&owega; 均为实变数,j2=-1。F(s)和f(t)间的关系由下面定义的积分所确定:如果对于实部σ >σc的所有s值上述积分均存在,而对σ ≤σc时积分不存在,便称 σc为f(t)的收敛系数。
对给定的实变量函数 f(t),只有当σc为有限值时,其拉普拉斯变换F(s)才存在。习惯上,常称F(s)为f(t)的象函数,记为F(s)=L[f(t)];称f(t)为F(s)的原函数,记为f(t)=L-1[F(s)]。
函数变换对和运算变换性质 利用定义积分,很容易建立起原函数 f(t)和象函数 F(s)间的变换对,以及f(t)在实数域内的运算与F(s)在复数域内的运算间的对应关系。表1和表2分别列出了最常用的一些函数变换对和运算变换性质。
拉普拉斯变化的存在性:为使F(s)存在,积分式必须收敛。有如下定理:如因果函数f(t)满足:(1)在有限区间可积,(2)存在σ0使|f(t)|e-σt在t→∞时的极限为0,则对于所有σ大于σ0,拉普拉斯积分式绝对且一致收敛。
基本性质编辑线性性质、微分性质、积分性质、位移性质、延迟性质、初值定理与终值[1] 与傅立叶变换的联系编辑令Re(s)=0,就可得到f(t)(t>=0)的傅立叶变换。之所以弄出一个 -是使f(t)可以进行傅立叶变换(因为f(t)e^(-t)满足了傅立叶变换的条件)但是这样的变换改变了傅立叶变换中的原函数,别急,反变换时把关于的部分还原回去就好了(即把积分的dw变成包含了的ds),这样就可以积分出原函数来,但是这个过程是改变了原函数的傅立叶变换和改变积分因子的傅立叶反变换,就是拉普拉斯变换,此时的iw变成+iw,他的讨论范围就不再单单是频率w而是一个复数(含有频率)的平面的s。
2.提出傅立叶变换的傅立叶和写《全世界和谐》的傅立叶是同一个人吗
不是一个人1:傅立叶(Fourier,Jean Baptiste Joseph,1768-1830)也译作傅里叶,法国数学家、物理学家。是傅立叶定律的创始人
2:夏尔·傅立叶(Charles Fourier,1772—1837) ,法国空想社会主义者。从19世纪初,他先后发表了《全世界和谐》、《四种运动论》、《新世界》等著作,揭露了资本主义制度的罪恶,主张以他设计的“和谐制度”来代替资本主义制度。他理想的“和谐社会”,是由一个个有组织的合作社组成,它的名称叫“法朗吉”。1832年,他和几个门徒一起创办了一个“法朗吉”。1837年10月9日,傅立叶和两个信徒进行了长谈。第二天早晨,发现他已穿好衣服伏在床边去世了。
3.什么是傅立叶变换
中文译名
Transformée de Fourier有多种中文译名,常见的有“傅里叶变换”、“傅立叶变换”、“付立叶变换”、“富里叶变换”、“富里哀变换”等等。为方便起见,本文统一写作“傅里叶变换”。
应用
傅里叶变换在物理学、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成幅值分量和频率分量)。
概要介绍
* 傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。最初傅里叶分析是作为热过程的解析分析的工具被提出的(参见:林家翘、西格尔著《自然科学中确定性问题的应用数学》,科学出版社,北京。原版书名为 C. C. Lin & L. A. Segel, Mathematics Applied to Deterministic Problems in the Natural Sciences, Macmillan Inc., New York, 1974)。
* 傅里叶变换属于谐波分析。
* 傅里叶变换的逆变换容易求出,而且形式与正变换非常类似;
* 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取;
* 卷积定理指出:傅里叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段;
* 离散形式的傅里叶变换可以利用数字计算机快速的算出(其算法称为快速傅里叶变换算法(FFT)).
基本性质
线性性质
两函数之和的傅里叶变换等于各自变换之和。数学描述是:若函数f \left( x\right )和g \left(x \right)的傅里叶变换\mathcal[f]和\mathcal[g]都存在,α 和 β 为任意常系数,则\mathcal[\alpha f+\beta g]=\alpha\mathcal[f]+\beta\mathcal[g];傅里叶变换算符\mathcal可经归一化成为么正算符;
频移性质
若函数f \left( x\right )存在傅里叶变换,则对任意实数 ω0,函数f(x) e^{i \omega_ x}也存在傅里叶变换,且有\mathcal[f(x)e^{i \omega_ x}]=F(\omega + \omega _0 ) 。式中花体\mathcal是傅里叶变换的作用算子,平体F表示变换的结果(复函数),e 为自然对数的底,i 为虚数单位\sqrt;
微分关系
若函数f \left( x\right )当|x|\rightarrow\infty时的极限为0,而其导函数f'(x)的傅里叶变换存在,则有\mathcal[f'(x)]=-i \omega \mathcal[f(x)] ,即导函数的傅里叶变换等于原函数的傅里叶变换乘以因子
4.什么叫傅立叶系数
傅里叶系数由Fourier coefficient翻译而来,有多个中文译名,如傅立叶系数。
它是数学分析中的一个概念,常常被应用在信号处理领域中。对于任意的周期信号,如果满足一定条件,都可以展开三角函数的线性组合,每个展开项的系数称为傅里叶系数。
扩展资料:
一、三角傅里叶级数:
以高等数学中的知识,任何周期为T的周期函数f(t),在满足狄利克雷条件时,可以由三角函数的线性组合来表示
上式即为周期信号的三角傅里叶级数表达式,其中,Ω=2π/T为基波信号,nΩ为n次谐波频率,
an,bn是傅里叶系数。
二、指数傅里叶级数:
其中,傅里叶系数为:
参考资料来源:百度百科-傅里叶系数
5.傅立叶变换如何书写花F
方法1:如果你在word中直接输入,那么你把这个复制一下就可以了 ℱ
方法2:如果你用公式3.0输入,则可以选择公式3.0窗口的“样式”——“其他”——“Commercial Script BT “即可,此时就可以把你输入的英文字母变成花写的形式。比如,你输入的F会变成花写的F
如果Commercial Script BT 这种字体没有找到,可以到网上下载一个,然后放入到系统的字体库中,若是win7系统,则直接将Commercial Script BT.ttf文件,击鼠标右键——“安装”即可。
6.公式1到公式2为傅立叶变换 在matlab里应该怎么写啊
先写程序:
clc
clear
CU=[]; %%这里导入你的数据
CU_f=fft(CU); %%做FFT变换到频域
figure(1)
subplot(2,1,1)
plot(CU);
subplot(2,1,2)
plot(abs(CU_f))
***************************
CU_f就是频谱图,但是你说的对应50Hz的点,需要结合你的实验过程来找了。MATLAB输入的数据只不过是上千个点,它们只有数学意义,没有物理意义。首先,这上千个点是你采样采到的,那你的采样频率是多少?这只有你做实验的人才知道,MATLAB本身不知道。假设采样频率是Fs。那么CU_f这张图里,最后一个点对应的实际频率就是Fs,(第一个点对应的实际频率是0Hz)。然后你再根据线性比例的关系,找到50Hz对应的那个点就行了。
7.什么是傅立叶变换
傅立叶变换表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。
傅里叶变换可以将原来难以处理的时域信号转换成了易于分析的频域信号(信号的频谱),可以利用一些工具对这些频域信号进行处理、加工。最后还可以利用傅里叶反变换将这些频域信号转换成时域信号。
正是由于拥有良好的性质,傅里叶变换在物理学、数论、组合数学、信号处理、概率、统计、密码学、声学、光学等领域都有着广泛的应用。
扩展资料:
在数学领域,尽管最初傅里叶分析是作为热过程的解析分析的工具,但是其思想方法仍然具有典型的还原论和分析主义的特征。
"任意"的函数通过一定的分解,都能够表示为正弦函数的线性组合的形式,而正弦函数在物理上是被充分研究而相对简单的函数类:
1、傅里叶变换是线性算子,若赋予适当的范数,它还是酉算子。
2、傅里叶变换的逆变换容易求出,而且形式与正变换非常类似。
3、正弦基函数是微分运算的本征函数,从而使得线性微分方。
参考资料来源:搜狗百科—傅立叶变换